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Shnirelman peak in level spacing statistics of Calogero-like three-body problem
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Statistical properties of quantum quasidegeneracy in a Calogero-like three-body problem is presented. The
hidden continuous symmetry of a Calogero problem is broken by adding a three-body interaction, which results
in discrete symmetry. This symmetry is sufficient to get the Shnirelman peak in level spacing statistics. Our
calculation immediately implicates the application of Shnirelman theorem in real physical quantum systems.
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I. INTRODUCTION

Energy-level statistics is an important property of a qu
tum system, since it indicates the type of internal mot
present in the system. This problem has drawn revival in
est in different contexts. Now it is a well-established fact th
distribution of nearest-neighbor level spacings is Poisson
for integrable systems, indicating no correlations betwe
spacings. Whereas level repulsion, i.e., Wigner statistic
related with classically chaotic systems. In a classic pa
@1#, Bohigas conjectured that the Poissonian universa
class of spectral fluctuations to be distinguished from G
and GUE ensembles of random matrices depending on
presence of time-reversal symmetry~GOE! or not ~GUE!.
Later Casatiet al. @2#, Seligman and Verbaarschot@3# pro-
vide some new discoveries in this direction. In 1993, Shn
lman showed that for systems with time reversal symme
one should observe a delta function peak of finite width
s50 in the nearest-neighbor spacing distributionp(s). It is
known as the Shnirelman peak@4#. Apparently, it was in
sharp contrast with the traditional level spacing statist
Later it was understood that this peak appears due to
presence of symmetry. Separating levels by symmetry,
will get back Poisson distribution. Actually, the Shnirelm
peak in the level spacing distribution indicates the prese
of bulk quasidegeneracy, which has later been verified
Chirikov and Shepelyansky@5#. They have studied kicked
rotator on a torus with time-reversal symmetry. The bu
quasidegenerate states are connected with time-reversal
metry in their model.

But so far the application of the Shnirelman theorem
highly restricted to a specific case. In this communicati
we present a more general model, a Calogero-like probl
which is widely used as a very useful model in differe
branches of physics. In 1969, in a nice paper@6#, Calogero
presented the complete solution of the Schro¨dinger equation
for three particles interacting pairwise by two-body harmo
and inverse-square potential given by

Vc5
1

8
v2(

i , j
~xi2xj !

21g(
i , j

~xi2xj !
22, ~1!
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whereg.2 1
2 to avoid collapse of the system. Then it wa

extended to the exact solutions of a many-body problem~the
Calogero-Sutherland model! @7,8#. Recently, it has attracted
renewed interest in connection with spin chain proble
@9,10#. The Hamiltonian of SU(n) spins is given by

H5(
j ,k

hjkPjk ~2!

with inverse square exchange interaction

hjk51/@~xj2xk!
2# , ~3!

wherePjk is the operator that exchanges the spins at lat
sites. xj are the static equlibrium positions of particles
classicalN-body Calogero systems@6,7#. In the Haldane-
Shastry model@9,10#, exact eigenstates of the family ofs
5 1

2 antiferromagnetic Heisenberg chain with 1/r 2 exchange
interaction has been studied. The energy spectrum exh
degenerate ‘‘super-multiplet’’ structure, which suggest h
den continuous symmetry present in the system. Very
cently, it has been shown that this structure is the con
quence of a Yangian symmetry@11#, which is intimately
related with integrability.

Due to the exact level degeneracy in the Calogero pr
lem, the nearest-neighbor level spacing distribution will ha
the trivial shape of a delta function. This exact degener
comes from hidden continuous symmetry, which can be b
ken introducing a suitable perturbation toVc . Now for a
system of many interacting particles, it is difficult to dete
mine the key mechanism that generates the statistical be
ior. So here we restrict ourselves toN53, where we can
clearly visualize the underlying mechanism played by
mutual interaction as well. We lift the continuous symme
of the Calogero three-body problem by adding a sim
three-body interaction

Vper5
A3 f

2r 2 Fx11x222x3

x12x2
1cyclic termsG , ~4!

where

r 25 1
3 @~x12x2!21~x22x3!21~x32x1!2#. ~5!

The reason to choose such a perturbing term: the proble
still integrable and algebraically solvable. One can calcul
©2002 The American Physical Society03-1
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very high-energy levels quite accurately from a simple a
lytic expression. Although the continuous symmetry is b
ken by this perturbation, discrete symmetry still remains
results to a bulk of quasidegeneracy leading to Shnirelm
peak ats50 in p(s) distribution. Our calculation not only
gives a physical interpretation of Shnirelman theorem bu
immediately implicates its application to a class of quant
systems. Being a three-body system, we expect to get m
pronounced Shnirelman effects here.

The paper is organized as follows. To make the paper s
contained in Sec. II, we present the concept of supersymm
ric quantum mechanics and shape invariance, which is u
to solve the Calogero problem analytically in the next s
tion. Section III deals with the exact analytic solution of t
chosen potential. Numerical results, discussion, and fi
conclusions are presented in Sec. IV.

II. SUPERSYMMETRIC QUANTUM MECHANICS AND
CONCEPT OF SHAPE INVARIANCE

Since the last few decades, it has been proved that su
symmetric quantum mechanics~SUSY-QM!, together with
the shape invariance condition, is the most compelling te
nique for exact solvability@12#. For a quantum-mechanica
problem with a potentialV1(x), supersymmetry allows on
to construct a partner potentialV2(x), which are isospectral
i.e., En11

(1) 5En
(2) . In SUSY-QM, one starts with the Schro¨-

dinger equation in the shifted energy scale, whereE0
(1)50:

H1c0~x!5@2 ~d2/dx2! 1V1~x!#c050. ~6!

Now defining superpotentialW(x) in terms of the ground-
state wave function as

W~x!52 c08/c0 , ~7!

it is easy to writeH1 in terms ofW as

H152 ~d2/dx2! 1W22W8. ~8!

Then its supersymmetric partner becomes

H252 ~d2/dx2! 1W21W8. ~9!

H1 and H2 are called two-partner Hamiltonians, where t
two-partner potentials are

V15W22W8,
~10!

V25W21W8.

Now the total SUSY Hamiltonian is given by

H5$Q,Q†%5S H1 0

0 H2
D , ~11!

where Q, Q†, represent the supercharges, whose exp
forms are

Q5F 0 0

A 0G and Q†5F0 A†

0 0 G . ~12!
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A and A† are called generalized annihilation and creati
operators, respectively, and can be written in terms of su
potential as

A5 ~d/dx! 1W~x!, A†52 ~d/dx! 1W~x!. ~13!

Then,H1,2 are factorizable as

H15A†A, H25AA†. ~14!

The relations obeyed byQ, Q†, and H satisfy the closed
superalgebrasl(1/1)

@H,Q#5@H,Q†#50 ~15!

and

$Q†,Q†%5$Q,Q%50; $Q,Q†%5H. ~16!

SUSY algebra can explicitly show the correspondence
tween En11

(1) and En
(2) . Let the eigenfunctions ofH1,2 that

correspond to eigenvaluesEn
(1,2) becn

(1,2) . One can easily see
that for n5” 0,

H2~Acn
(1)!5AA†~Acn

(1)!5AH1cn
(1)5En

(1)~Acn
(1)!.

~17!

Thus, forn.0, Acn
(1) is an eigenfunction ofH2, which is a

supersymmetric partner state ofcn
(1) . SinceAc0

(1)50, the
ground state ofV1(x) does not have a SUSY partner and o
finds En11

(1) 5En
(2) . Thus, SUSY algebra@12# shows that the

pair of potentialsV1,2 have the same eigenspectrum, only t
ground state ofV1 will be missing inV2 ~good supersymme
try!. Now shape invariance means: if the pair of SUSY pa
nersV1,2 are similar in shape and differ only in paramete
i.e.,

V2~x;a1!5V1~x;a2!1R~a1!, a25 f ~a1!, ~18!

thenV1,2 are said to be shape invariant. The shape invaria
condition is an integrability condition. Using this conditio
in the hierarchy of Hamiltonians one can easily obtain
energy eigenvalues and eigenfunctions of any shape inv
ant potential analytically. The complete eigenspectrum ofH1
is then given by

En
(1)5 (

k51

n

R~ak!, E0
(1)50. ~19!

III. EXACT ANALYTIC SOLUTION OF
CALOGERO PROBLEM

Using the concept of supersymmetric quantum mecha
@12# and shape invariance condition, one can solve the
three-body problemV5Vc1Vper in a simple algebraic man
ner ~Sec. 4.5 of Ref.@12#!. The full three-body potential of a
modified Calogero problem has the following form:
3-2
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V~x1 ,x2 ,x3!5 1
8 v2(

i , j
~xi2xj !

21g(
i , j

~xi2xj !
22

1
A3 f

2r 2 Fx11x222x3

x12x2
1cyclic termsG .

~20!

Following Calogero notation, one can mapV(x1 ,x2 ,x3) to
V(r ,f). Define the Jacobi coordinates as

R5 1
3 ~x11x21x3!,

x5 ~x12x2!/A2 , ~21!

y5 ~x11x222x3!/A6 .

Eliminating the center-of-mass motion, the three-body pr
lem can be reduced to effectively a one-body problem in t
dimensions

x5r sinf,
~22!

y5r cosf,

with r andf range; 0<r<` and 0<f<2p.
Then,V(x1 ,x2 ,x3) can be easily tranformed to polar co

ordinates as

V~r ,f!5
3

8
v2r 21

1

r 2 F9

2
g csc23f1

9

2
f cot 3fG

5V~r !1 @V~f!/r 2# ~23!

using the identities

(
m51

3

csc2[f12~m21! ~p/3!] 59 csc23f,

(
m51

3

cot@f12~m21! ~p/3!#53 cot 3f. ~24!

Note thatV(r ,f) is separable in the (r ,f) coordinate and
the total wave function can be written as

cnl~r ,f!5
Rnl~r !

Ar
Fl~f!. ~25!

Supersymmetric quantum mechanics shows thatV(r ,f) is
shape invariant inr and f coordinates separately and on
can get the full energy spectrum algebraically.

The radial Schro¨dinger equation

F2
d2

dr2
1

3

8
v2r 21

~Bl
22 1

4 !
r 2 GRnl5EnlRnl~r ! ~26!
06710
-
o

corresponds to shape invariant potential with superpoten

W~r !5A3

8
vr 2

Bl1
1
2

r
. ~27!

Bl
2 is the energy eigenvalue of the Schro¨dinger equation in

the angular variable. SinceV(r )5 3
8 v2r 21(Bl

22 1
4 )/r 2 is

shape invariant withW(r ) given by Eq. ~27!, the radial
Schrödinger equation is algebraically solvable and the e
ergy eigenvalues are obtained in a closed form

Enl5A 3
2 v~2n1Bl11!, n50,1,2,. . . , l 50,1,2 . . . .

~28!

The Schro¨dinger equation in angular variable is

F2
d2

df2
1

9

2
g csc23f1

9

2
f cot 3fGFl~f!5Bl

2Fl~f!,

~29!

which again corresponds to shape invariant potential in
gular variable with superpotential

W~f!523~a11/2!cot 3f2
3

4

f

a11/2
,

a51/2~112g!1/2. ~30!

It results in an analytic expression ofBl
2:

Bl
259~ l 1a11/2!22

9

16

f 2

~ l 1a11/2!2
. ~31!

It is easy to check that withf 50 limit one can recover the
results for the Calogero potentialVc , which results in highly
degenerate multiplets.

IV. RESULTS AND DISCUSSION

We calculate the lowest 10 000 energy levels from E
~28! using Eq.~31! with very high precision. In our double
precision calculation we keep 15 valid digits. Before calc
lating nearest-neighbor level spacing distributionp(s), we
first unfold the spectrum, just to get rid ofNav(E). Let $Ei%
be a sequence of discrete spectrum andN(E) is the spectral
staircase function that counts the number of levels belowE.
Now it is possible to separateN(E) in a smooth partNav(E)
and a fluctuating partNf l(E):

N~E!5Nav~E!1Nf l~E!. ~32!

Unfolding is done through some mappingE→e,

$e i%5$Nav~Ei !%, i 51,2,•••. ~33!

The sequence$e i% now has unit mean spacing. The lev
spacing issi5e i 112e i . Now p(s) distribution will apply to
this sequence$e i%.

For unfolding, we use cubic spline smoothing and calc
late p(s) distribution from the unfolded spectrum. Our re
3-3
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sults are presented in Figs. 1 and 2. In Fig. 1, we p
nearest-neighbor level spacing distributionp(s). In Fig. 2,
we present integral level spacing distributionI (s)5Np(s),
where the spacing integral probability is normalized to uni
As a representative calculation we take the parameterg
520.1, f 52.0, andg51.0, f 55.0. The left column of Fig.
1 corresponds to the first set of parameters and the ri
column of Fig. 1 corresponds to the second set of para
eters. In both cases, the large peak appears in the first bi
the histogram. To see the distribution in finer details neas
50, we plot them in Figs. 1~c!–1~f!, where the Shnirelman
peak in the first bin clearly demonstrates the existence
global quasidegeneracy. It unambiguously supports the
theorem predicted by Shnirelman. The resolution of the pe

FIG. 1. Level spacing distributionp(s) with g520.1, f 52.0
~left column! andg51.0, f 55.0 ~right column!.
t
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is presented in Fig. 2. It has two different regions. The lef
most part is most interesting. It shows the linear dependen
of I on ln s, which represents the structure of the Shnirelma
peak, whereas the rightmost steep increase part repres
the Poissonian tail. The results with much higher three-bo
interaction~large value off ) are not presented here. We hav
checked that a higher value off cannot lift the effect of
quasidegeneracy completely. So for this integrable perturb
tion the effect of global quasidegeneracy remains.

In conclusion, we want to mention that our results prese
the appearance of the Shnirelman peak in the level spac
distribution of a very important integrable model, which i
widely used for realistic physical problems in differen
branches of physics. Our results clearly prove that discre
symmetry present in the quantum system is sufficient for t
appearance of the Shnirelman peak. Being a three-bo
model, the Shnirelman effect is much pronounced here. O
calculation nicely demonstrates how a three-body interacti
can be used as perturbation to lift hidden continuous symm
try when discrete symmetry still remains. Being an analyt
cally solvable model, its extension ton-body problem is
quite straightforward where one can expect much rich stru
ture of quasidegeneracy.
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FIG. 2. Normalized integral level spacing distribution with the
same parameters as Fig. 1.
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