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Shnirelman peak in level spacing statistics of Calogero-like three-body problem
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Statistical properties of quantum quasidegeneracy in a Calogero-like three-body problem is presented. The
hidden continuous symmetry of a Calogero problem is broken by adding a three-body interaction, which results
in discrete symmetry. This symmetry is sufficient to get the Shnirelman peak in level spacing statistics. Our
calculation immediately implicates the application of Shnirelman theorem in real physical quantum systems.
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[. INTRODUCTION whereg>— 3 to avoid collapse of the system. Then it was
extended to the exact solutions of a many-body prokgre
Energy-level statistics is an important property of a quan-Calogero-Sutherland moddl7,8]. Recently, it has attracted
tum system, since it indicates the type of internal motionrenewed interest in connection with spin chain problems
present in the system. This problem has drawn revival interf9,10]. The Hamiltonian of SU{) spins is given by
est in different contexts. Now it is a well-established fact that
distribution of nearest-neighbor level spacings is Poissonian _
. STIDOT. . H=> hyPi )
for integrable systems, indicating no correlations between =k
spacings. Whereas level repulsion, i.e., Wigner statistics is
related with classically chaotic systems. In a classic papewith inverse square exchange interaction
[1], Bohigas conjectured that the Poissonian universality _ 2
class of spectral fluctuations to be distinguished from GOE hjx=1/1(x=x07], )
and GUE ensembles of random matrices depending on thg, .o P,y is the operator that exchanges the spins at lattice
presence Of_ t|me-reversgl symmet§OE) or not (GUE). sites. x; are the static equlibrium positions of particles in
L_ater Casatiet aI._ (2], Se_hgr_nan _ano_l Verbaarschtﬂ] Pro-  classical N-body Calogero systemis,7]. In the Haldane-
vide some new discoveries in this direction. In 1993, Shnire+

Iman showed that for systems with time reversal symmetrySh{JIStry modef9,10}, exact eigenstates of the family of
l: l . . . . .
one should observe a delta function peak of finite width > antiferromagnetic Heisenberg chain wittr 1exchange

a . . -
s=0 in the nearest.neighbor spacing distributiags). It is fnteraction has been studied. The energy spectrum exhibits

known as the Shnirelman pedl]. Apparently, it was in degenerate “super-multiplet” structure, which suggest hid-

h trast with the traditional level . tatisti den continuous symmetry present in the system. Very re-
i ?rp .::on ras \év' ¢ % trr? tl [[cr)]rja eVE spacing ds a'f 'Cticently, it has been shown that this structure is the conse-
ater it was understood that this peak appears due 10 g,ance of g Yangian symmetif)11], which is intimately
presence of symmetry. Separating levels by symmetry, on lated with integrability

will get back Poisson distribution. Actually, the Shnirelman Due to the exact level degeneracy in the Calogero prob-

peak in the level spacing distribution indicates the PréSenCrm the nearest-neighbor level spacing distribution will have

of bulk quasidegeneracy, which has later been verified b¥he trivial sha ; ;
) . : pe of a delta function. This exact degeneracy
Chirikov and Shepelyansk}s]. They have studied kicked comes from hidden continuous symmetry, which can be bro-

rotator on a torus with time-reversal symmetry. The bquken introducing a suitable perturbation Y. Now for a

quasid_egenr_erate states are connected with time-reversal Sygil'stem of many interacting particles, it is difficult to deter-
metry in their model. '

far th licati f the Shnirel h ._mine the key mechanism that generates the statistical behav-
nighly restrcted o & speoific case. In this communoation %", SO Nere we restrict ourseives =3, where we can
we present a more general model .a Calogero-like proble tlearly _\/lsuahz_e the underlymg_ mechanlgm played by the
’ Mhutual interaction as well. We lift the continuous symmetry

which is widely used as a very useful model in different : :
. . . of the Calogero three-body problem by adding a simple
branches of physics. In 1969, in a nice paf&}; Calogero three-body interaction

presented the complete solution of the Sclimger equation

for three particles interacting pgirwise by two-body harmonic J3f X1+ X — 2Xg _
and inverse-square potential given by per=—— | —o—-—— Tcyclic termg, 4
2r? X1 Xz
1 ) ) . where
Ve=go?2 (=x)*+92 (x=x)"% (D) L , , ,

=] 1=l r°=3[(Xg=X2) =+ (Xa=X3) "+ (X3—X1)“]. )
The reason to choose such a perturbing term: the problem is
*Email address: barnali@phys.hkbu.edu.hk still integrable and algebraically solvable. One can calculate
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very high-energy levels quite accurately from a simple anaA and AT are called generalized annihilation and creation
lytic expression. Although the continuous symmetry is bro-operators, respectively, and can be written in terms of super-
ken by this perturbation, discrete symmetry still remains. Itpotential as

results to a bulk of quasidegeneracy leading to Shnirelman

peak ats=0 in p(s) distribution. Our calculation not only A= (d/dx) +W(x), AT=—(d/dx) +W(x). (13
gives a physical interpretation of Shnirelman theorem but it

immediately implicates its application to a class of quantumrpen H, , are factorizable as

systems. Being a three-body system, we expect to get more '

pronounced Shnirelman effects here. H,=ATA, H,=AA" (14)

The paper is organized as follows. To make the paper self-
contained in Sec. Il, we present the concept of supersymmets
ric quantum mechanics and shape invariance, which is use
to solve the Calogero problem analytically in the next sec-
tion. Section 11l deals with the exact analytic solution of the
chosen potential. Numerical results, discussion, and final
conclusions are presented in Sec. IV.

e relations obeyed b®, Q', and H satisfy the closed
peralgebra|(1/1)

[H,Q]=[H,Q"]=0 (15)

and

Il. SUPERSYMMETRIC QUANTUM MECHANICS AND t A — _n- 1
CONCEPT OF SHAPE INVARIANCE 1Q1.Q}={Q.Q}=0; {Q.Q}=H. (16)

Since the last few decades, it has been proved that supe8USY algebra can explicitly show the correspondence be-
symmetric quantum mechani¢SUSY-QM), together with  tweenE(Y, and E?. Let the eigenfunctions oH, , that
the shape invariance condition, is the most compelling techeorrespond to eigenvalu&$®? be 4{"?. One can easily see
nique for exact solvabilitf12]. For a quantum-mechanical that forn#0,
problem with a potential/1(x), supersymmetry allows one
to construct a partner potentielb(x), which are isospectral, Ho(AyD)=AAT(AY D) =AH D =ED(AyD).

i.e., EY,=E® . In SUSY-QM, one starts with the Schro (17)
dinger equation in the shifted energy scale, Whégjé=0:

Thus, forn>0, Ay{Y is an eigenfunction oH,, which is a
supersymmetric partner state ¢f). Since Ay{M=0, the
ground state of/,(x) does not have a SUSY partner and one
finds E(Y,=E® . Thus, SUSY algebrfil2] shows that the
pair of potentials/, , have the same eigenspectrum, only the

Hiho(x)=[— (d¥/dx?) +V1(X)]¢p=0. (6)

Now defining superpotentidlV(x) in terms of the ground-
state wave function as

W(X)=— il b, (7) ground state o¥/; will be missing inV, (good supersymme-
try). Now shape invariance means: if the pair of SUSY part-
it is easy to writeH, in terms of W as nersV, , are similar in shape and differ only in parameter,
ie.,
Hi=— (d%dx?) + W2~ W', (8)

Then its supersymmetric partner becomes Va(xia) =Vi(xa) +R(ay),  a=f(ay), (19
H,o=— (d%/dx?) + W2+ W', (99 thenV,,are said to be shape invariant. The shape invariance

condition is an integrability condition. Using this condition
H, andH, are called two-partner Hamiltonians, where thein the hierarchy of Hamiltonians one can easily obtain the

two-partner potentials are energy eigenvalues and eigenfunctions of any shape invari-
) ant potential analytically. The complete eigenspectruril pf
Vi=W=W’, is then given by
(10)
Vo=W2+W'. n
EM=> R(a), E{’'=0. 19
Now the total SUSY Hamiltonian is given by " kzl (@) 0 19
Hy
H ={Q,QT}= 0 H.l (11 I1l. EXACT ANALYTIC SOLUTION OF
2 CALOGERO PROBLEM
where Q, Q', represent the supercharges, whose explicit Using the concept of supersymmetric quantum mechanics
forms are [12] and shape invariance condition, one can solve the full
0 0 0o Al three-body problenv=V + V., in a simple algebraip man-
0= and Q'= . (12) ner (Sec. 4.5 of Ref[12]). The full three-body potential of a
A O 0 O modified Calogero problem has the following form:
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V(X1,X2,X3) =5 w2i2<j (Xi_xj)2+ ggj (Xi_xj)_z

J3f X1+ Xo—2X5

5 +cyclic term%.
2r X1— X2

(20

Following Calogero notation, one can m&jifx;,X,,Xs) to
V(r, ). Define the Jacobi coordinates as

R: % (X1+ X2+X3),
x= (X, —%2)//2,, (21)

y= (X1 + x2—2x3)/\/5.

Eliminating the center-of-mass motion, the three-body prob-
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corresponds to shape invariant potential with superpotential

3 B+ 3
W(r)= gwr— t

B,2 is the energy eigenvalue of the Sctimger equation in
the angular variable. Sinc¥(r)=32w?r?+(B2—3%)/r? is
shape invariant withW(r) given by Eg.(27), the radial
Schralinger equation is algebraically solvable and the en-
ergy eigenvalues are obtained in a closed form

(27)

E,=\2w(2n+B+1), n=012,..., 1=012... .
(28)

The Schrdinger equation in angular variable is

> 9 23 2 o,
—dTSzJFEQCS 3¢>+§ cot3¢ |F()=BiF|(¢),

(29

lem can be reduced to effectively a one-body problem in two

dimensions
X=r sing,
(22
Y=T COS¢,

with r and ¢ range; Gsr<o and O< $p<27.

Then,V(X4,X5,X3) can be easily tranformed to polar co-

ordinates as

3 ,, 1[9 9
V(r )= g +r—2 Egcsc’-3¢+ 5 fcot3s

=V(r)+ [V(¢)/r?] (23

using the identities

3

> cs@[p+2(m—1)(7/3)] =9 csé3¢,

3
> cot[p+2(m—1)(w/3)]=3 cot3p. (24)

m=1

Note thatV(r,¢) is separable in ther(¢) coordinate and
the total wave function can be written as

Rni(1)

\/F

Supersymmetric quantum mechanics shows Wat, ¢) is

Ini(r, )= Fi(¢). (25

shape invariant imr and ¢ coordinates separately and one

can get the full energy spectrum algebraically.
The radial Schrdinger equation

—) Ru=EnRn(r)  (26)

which again corresponds to shape invariant potential in an-
gular variable with superpotential

W(¢)=—3(a+1/2)cot3¢— >

4a+1/2’
a=1/2(1+2g)*2 (30)
It results in an analytic expression Bf:
9 2
B?=9(I+a+1/2?— ———— (31)

16 (1 +a+1/2)2

It is easy to check that witfi=0 limit one can recover the
results for the Calogero potent], which results in highly
degenerate multiplets.

IV. RESULTS AND DISCUSSION

We calculate the lowest 10000 energy levels from Eq.
(28) using Eq.(31) with very high precision. In our double
precision calculation we keep 15 valid digits. Before calcu-
lating nearest-neighbor level spacing distributip(s), we
first unfold the spectrum, just to get rid bf,,(E). Let {E;}
be a sequence of discrete spectrum bifé&) is the spectral
staircase function that counts the number of levels bdtow
Now it is possible to separaté(E) in a smooth parN,,(E)
and a fluctuating pani; (E):

N(E)=Ng,(E) + N (E). (32)
Unfolding is done through some mappikg- e,
{Ei}:{Nav(Ei)}1 i:1121" T (33)

The sequencde;} now has unit mean spacing. The level
spacing iss;= €; 1 — € . Now p(s) distribution will apply to
this sequencée;}.

For unfolding, we use cubic spline smoothing and calcu-
late p(s) distribution from the unfolded spectrum. Our re-
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FIG. 1. Level spacing distributiop(s) with g=—-0.1,f=2.0
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(left column andg=1.0, f =5.0 (right column).

sults are presented in Figs. 1 and 2. In Fig. 1, we plo
nearest-neighbor level spacing distributip(s). In Fig. 2,
we present integral level spacing distributibfs) =Np(s),
where the spacing integral probability is normalized to unity.
As a representative calculation we take the paramegers
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FIG. 2. Normalized integral level spacing distribution with the
same parameters as Fig. 1.

is presented in Fig. 2. It has two different regions. The left-
most part is most interesting. It shows the linear dependence
of I onln s, which represents the structure of the Shnirelman
peak, whereas the rightmost steep increase part represents
the Poissonian tail. The results with much higher three-body
interaction(large value off) are not presented here. We have
checked that a higher value d&fcannot lift the effect of
quasidegeneracy completely. So for this integrable perturba-
tion the effect of global quasidegeneracy remains.

In conclusion, we want to mention that our results present
the appearance of the Shnirelman peak in the level spacing
distribution of a very important integrable model, which is
widely used for realistic physical problems in different
branches of physics. Our results clearly prove that discrete
gymmetry present in the quantum system is sufficient for the
appearance of the Shnirelman peak. Being a three-body
model, the Shnirelman effect is much pronounced here. Our
calculation nicely demonstrates how a three-body interaction
can be used as perturbation to lift hidden continuous symme-
try when discrete symmetry still remains. Being an analyti-

=~0.1,7=2.0, andg=1.0,=5.0. The left column of Fig. h(ially solvable model, its extension ta-body problem is

1 corresponds to the first set of parameters and the ri . : ;
column gf Fig. 1 corresponds to tﬁe second set of para?ngu'te straightforward where one can expect much rich struc-

eters. In both cases, the large peak appears in the first bin })Lfre of quasidegeneracy.

the histogram. To see the distribution in finer details reear ~ B. C. would like to thank B. Li and T. K. Das for their
=0, we plot them in Figs. £)-1(f), where the Shnirelman helpful discussions. The work was supported in part by
peak in the first bin clearly demonstrates the existence ofirants from the Hong Kong Research Grants CouiiiC)
global quasidegeneracy. It unambiguously supports the oldnd the Hong Kong Baptist University Faculty Research
theorem predicted by Shnirelman. The resolution of the pealGrant (FRG).
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